

NANAIMO 2013.02.28

Roger Whitehead
Natural Resources Canada
Canadian Forest Service
Canadian Wood Fibre Centre
Victoria, BC

LiDAR is not magic... But, it's close!

LiDAR can...

- Map terrain & some forest attributes at much higher spatial resolution & accuracy than usual
- "See ground features through the trees"
 - (sort of…)

Airborne Light Detection And Ranging

- Airborne laser scanner...
 - emits LASER pulses
 - senses energy reflected from objects impacted
 - intensity, distance & angle relative to an on-board GPS & IMU
 - stored as a digital "point cloud"
 with x,y,z & I_v for each return
 - Other returns describe the vegetation canopy
 - Last returns describe terrain

Multiple returns from each pulse...

- "Footprint" of pulse at ground-level is usually about 30 cm diameter
- Some energy passes through upper canopy, & impacts lower vegetation
- Some may hit the ground

Pre-processing → separation of "Ground"

Ground Hits → useful for Digital Terrain Modeling (aka DEM)

Non – ground hits → useful for canopy structure

Typical Orthophoto & LiDAR Products

RGB (LiDAR rectified)

- Raw Point Cloud
- Point classification

Digital Surface Model

Digital Elevation Model

Further processing → more information

Subtract DEM from DSM → Canopy Height Model

From: St.-Onge, B., Treitz, P., Wulder, M., Kurtz, W. & Gillis, M. 2004. Restropspective mappling of structural and biomass changes in forest ecosystems using photogrammetry and laser altimitry. Am. Geophys. Union/Can. Geophys. Union Jt. Assembly, Montreal, May 17-21

Seeing through the trees...

Natural Tolerant Hardwood Natural Conifer Shelterwood Conifer Plantation **RGB Image** 0.5 pulses/ m² pulses/ m^2 LiDAR and Large Scale Digital Photography Uses in Natural Resource Management Workshop Ontario Sept. 10-11, 2008, University of Northern British Columbia, Prince George, BC Source: Woods et al. (2008)

Higher point density now available

- 8-12 hits/m² common
 - higher resolution
 - larger dataset
- More complex terrain needs high hit density for terrain mapping
- With very dense cover, classification of ground hits is <u>still</u> challenging

Improved accuracy & resolution

TRIM2

- 25m resolution
- 10m vertical accuracy

LiDAR

- 1m resolution
- 10–30 cm vertical accuracy

TRIM2 data courtesy BCMFLNRO, FAIB
Images courtesy Joanne White, NRCan, CFS, PFC

Using LiDAR products...

Sore knees, bad back & worn boots

LiDAR DEM & CHM

- are very useful supplements to traditional planning & layout tools
- should make your knees, back & boots last much longer

In fact, it's a whole new world...

Images by courtesy of

There's still more info in the point cloud...

- The raw Point Cloud is a very large dataset...
- ...can be mathematically processed to extract value
- → Enhanced Forest Inventory

Canadian Wood Fibre Centre

Above-ground returns → "Canopy Metrics"

"Tiles" → Mosaic → "Grid Cells"

0

Laser Canopy Height (m)

50

100

Number of Laser Returns

150

200

615660

Ground Calibration -> Prediction Models

GPS-located Ground Plots

"Plot-level" **Inventory Metrics**

Height(s) Fuel Load

DBHq **Biomass**

BA Carbon

Piece-size Volume

Density etc.

Regression **Analyses**

Prediction Models

"Plot-level" **Canopy Metrics**

	Jack Pine		
Dependent variable	ariable Prediction equation		CV %
TOPHT (m)	6.8 + 0.86 x p90	0.76	3.8
AVGHT (m)	15.82 + 0.35 x p80 + -7.53 x d7	1.05	6.5
QMDBH (cm)	0 + 0.78 x p90 + 7.79 x d7	1.54	9.0
SUMBA (m² ha-1)	8.52 + 2.78 x mean + -0.41 x p20	5.92	19.0
SUMGTV (m³ har¹)	82.70 + 1.23 x meanxp90 + -2.52 x p20	44.85	18.
SUMGMV (m³ ha-1)	31.32 + 1.23 x meanxp90 + -4.44 x p20	36.67	18.
BIOMASS (Kg ha ⁻¹)	52049.357 + 551.34 x meanxp90	24478	19.
	Black Spruce		
TOPHT (m)	0 + 1.0 x p90 + 7.01 x d6	1.24	7.
AVGHT (m)	5.08 + 0.65 x p90	1.13	8.
QMDBH (cm)	4.68 + 0.62 x p90 + 3.13 x d6	1.37	9.
SUMBA (m² ha-1)	0 + 4.64 x mean + -2.68 x p20	4.83	18.
ᢝᢗ᠘ᢗᡘᠮᢗ᠘ᢐᡲᡶᡜᢞ᠆ᠵᢇ	- SANDON STANDED STANDARD STAN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24

Scaling up to inventory...

 The appropriate prediction model is then applied to every grid-cell → predicted attributes, which are "mapped" as GIS rasters

 Although the LiDAR dataset is huge... the products (GIS layers) are not and can be easily used

Volume = $22,690 \text{ m}^3 + /- 940 \text{ m}^3$

Size Class (cm)

10 121416 1820 2224 2628 3032 34 36 40 42 44 46

VOLUME

- Statistically-sound, sample-based estimates for every grid-cell
- Spatial...
 - mean & confidence interval for parameters in any chosen polygon
- High Resolution
 - within—polygon variability

Figures courtesy Murray Woods & Kevin I im

20

10

Stems/ha

100

Scalable from plot to landscape...

Yeah... but are the predictions any better?

Weight-scaled volume from 272 cutblocks harvested since LiDAR acquisition compared to predictions from LiDAR vs. Cover Type Adjusted Volume Tables

Block Size (m³ X1000)	Source of Prediction	Predicted Volume - Scaled Volume	Statistically significant?
< 5	LiDAR	-6.7%	No
n = 138	CT Vol. Table	-23.7%	Yes
5 – 10 n = 76	LiDAR	+1.8%	No
	CT Vol. Table	-17.4%	Yes
10 – 15	LiDAR	-1.2%	No
n = 25	CT Vol. Table	-22.3%	Yes
15 – 20	LiDAR	-4.4%	No
n = 15	CT Vol. Table	-23.5%	Yes
> 20	LiDAR	+6.6%	No
n = 18	CT Vol. Table	-17.4%	No

Vol.T. underestimated scaled volume by 19.8%

LiDAR overestimated scaled volume by

Information courtesy Hinton Wood Product A division of West Fraser Mills Ltd.

