A Context and Strategy for Intensive Management of Red Alder

Coastal Silviculture Committee
Winter Workshop, Feb. 22 2012

Craig Farnden PhD, RPF
Intensive management
Red alder....
SAY WHAT?
Pop Quiz

What is the peak annual production of red alder lumber – all jurisdictions?

a) 2 million board feet
b) 4 million board feet
c) 8 million board feet
d) 16 million board feet
e) 32 million board feet
A Context for Intensive Management of Red Alder

Alder Manufacturing

US Current

BC
1996-2007

BC Current

Each bundle = 1 mmfbm

BC Potential

BC
Alder Log Values

• Better than for hemlock
• A little below Douglas-fir in BC, roughly comparable in US
• Lumber values comparable to Douglas-fir
• Log price affected by higher conversion costs
Future Market Potential

• Less of a commodity than softwood lumber

• Huge potential market:
 – Typical home needs 10x value in finish grade products compared to commodity lumber
 – Total NA finish grade products market is $200 billion; growing at 8-10% annually
Historic Harvest Levels

Scaled Alder Volume (m3)

Year

- Crown
- Private
Potential Harvest Levels

A Context for Intensive Management of Red Alder
Potential Harvest Levels

LTHL with full management of current cover including 85% planting

A Context for Intensive Management of Red Alder
Potential Harvest Levels

Adjustments for climate change

Harvest Level (m³/yr)

2012
Potential Harvest Levels

Adjustments for climate change – with (top) and without (bottom) adaptation
Potential Harvest Levels

LTHL with full management of current cover including 85% planting

Harvest Level (m³/yr)

2012
Silviculture Effects

Alder S_{50} = 32 m

A Context for Intensive Management of Red Alder
Silviculture Effects
A Context for Intensive Management of Red Alder

Potential Harvest Levels

LTHL with full management of current cover including 85% planting
Potential Harvest Levels

Increase alder cover from 2.1 to 2.9% of forested landbase.
Overall Outcomes

<table>
<thead>
<tr>
<th>Case</th>
<th>LTHL (m³/yr)</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>~50,000</td>
<td>~130</td>
</tr>
<tr>
<td>Basic Silviculture</td>
<td>500,000</td>
<td>1300</td>
</tr>
<tr>
<td>CC – No Adaptation</td>
<td>470,000</td>
<td>1200</td>
</tr>
<tr>
<td>CC – With Adaptation</td>
<td>600,000</td>
<td>1500</td>
</tr>
<tr>
<td>CC-A + Area Increase</td>
<td>970,000</td>
<td>2200</td>
</tr>
</tbody>
</table>
Impediments to Change - forest management -

- Persistent conifer bias
- Lack of expertise
- Uncertainties around seed and planting stock
- Few current licensees see benefits
- No tree improvement program
Impediments to Change - industrial investment -

- Short term supply uncertainty
 - Commitment of current licensees to supply domestic market
 - Poor inventory and TSR information
- Long term supply uncertainty
 - Spotty reforestation record
 - No commitment to alder in management plans
Key Elements of a Red Alder Strategy

• Need a clear commitment to Red Alder with strategic direction – Provincially and apportioned by Management Unit
• Improved Inventory and TSR
• Tree improvement program
• Create open and competitive log market
Acknowledgements

The FFESC red alder and climate change team:

Phil Comeau (UofA) Marty Kranabetter (MoFLNRO)
Francesco Cortini (UofA) Bruce Larson (UBC)
Louise DeMontigny (MoFLNRO) Dan Nadir (UBC)
George Harper (MoFLNRO) Brendan Porter (Uvic)
Barbara Hawkins (Uvic) Ron Trosper (UBC/UAriz)
David Hibbs (OSU) Tongli Wang (UBC)
Rob Kozak (UBC)

Also:

Brian Kyle, John Andres and many others
Questions and Discussion