BEC - Integration of 3 Classifications

- Links climate, site and vegetation in an integrated classification across scales
- Framework for ecological understanding, planning and management
- Plant Association – on a zonal site is a diagnostic of a climatic subzone
- Occurrences of a plant association across climatic units define a site association

BGC Subzones - Definition and Delineation with Zonal Plant Associations

- Focus on the vegetation on zonal sites to determine and delineate your BGC subzone
- Zonal sites
 - vegetation driven by climate rather than site conditions
 - average moisture and nutrient conditions
Site Series

Site Identification Procedure

Biogeoclimatic Unit (Subzone/Variant)

PREFIELD
- Determine geographic location (including elevation)
- Refer to maps of BGC unit distributions and cross-sections
- Refer to other resource mapping (e.g., soils, terrain, TEM)

EN ROUTE TO SITE
- Observe terrain and zonal vegetation en route to the site
- Refer to environment and vegetation summary tables for BGC units

Site Unit (Site series)

AT SITE
- Describe site, soil and vegetation conditions
 - Select sample area
 - Estimate % cover for vegetation in plot
 - Collect site information
 - Collect soil information from soil pit
 - Determine soil moisture and soil nutrient regime
- Identify site unit
 - Examine description of units
 - Integrate site, soil, and vegetation information

• Subzone/variants have multiple site series indicating site conditions capable of producing different plant associations
• Site series are the most commonly used category for field use
• Edatopic grid presents the range of soil moisture and nutrient conditions associated with the site series

Coast Area BEC-
Working on updates to:
- Classification
- Mapping

Also inputs to:
- Climate Change Informed Tree Species Selection (CCISS)/stocking standards
- Climate-based Seed Transfer (CBST)
Climate Change Informed Tree Species Selection (CCISS) – components and research inputs

BEC provides a foundation for prediction and detection of climate change at multiple scales

BEC to inform silvicultural decisions at stand and landscape scales to reduce economic and ecological risk and increase these values

BEC considerations:
- Predictability of bioclimate envelopes
- Changing site – vegetation relations
- Shifting species interactions and individual responses
- Increase in reliance on site factors, less on vegetation

Species
- Tree species (and ecosystems) (Gray; Rehfeldt; Iverson; Aitken)
- Dry coastal species (CDFmm and CWHxm) (Klassen)
- Seed source and deployment zones (O’Neill)
- Plant hardiness zones (CFS – McKenney)

Site level/site types
- Sayward Forest (Carpenter & Dymond)
- Dry south coast climate change project (Coast Research, MFLNRO)

Stand Level Diversity:
- **Reduces:**
 - risk of complete stand failure
 - pest outbreak severity
- **Enhances:**
 - stand yield in a changing environment
 - structural attributes of habitat diversity
 - range of forest products

Landscape Level Diversity:
- **Reduces:**
 - cumulative effects of individual stand-level decisions
 - risk of widespread losses from species-specific pests
 - spread and impact of other natural disturbances (e.g., fire)
- **Enhances:**
 - flexibility in stand management while meeting broader targets
 - feasibility of evaluating experimental options