

Fertilization Opportunities & Challenges

Outline:

- Review of theory of fertilization response
- Research results; what we know and don't know
- Key issues for fertilization planning
- Opportunities for manual treatments
- Opportunities for treatment of Cw on non-SCHIRP sites
- Fertilization and carbon sequestration; is there a business case?
- Recommendations

Review of theory—Biological

- Site: Nutrient deficient (N) with no other significant limiting factors (moisture, growing season).
- Stand: Large crowns with room for expansion on healthy trees.
 - Physiology of Response (H. Brix, CFS):
 - Increased foliar N leads to increased photosynthesis.
 - Growth response peaks 3 to 5 years after treatment and is finished by 10 years.
 - Major Species:
 - Fd—Responds well and consistently
 - Hw—Inconsistent response (except SCHIRP sites)
 - Cw/Ss—Insufficient research data to support operational application (except SCHIRP or poor sites).

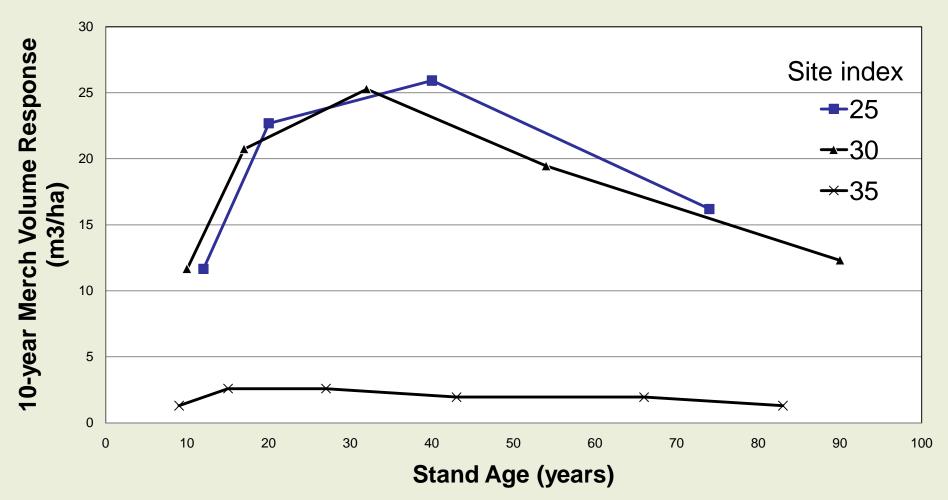
Review of theory—Financial

- Discounted increased value (quantity and quality) of wood must be sufficient to support the discounted treatment and incremental logging costs.
- Key Factors:
 - Desired rate of return on investment
 - Treatment costs
 - Assumed future product values
 - Risk of loss

Summary of Fd Research History:

Huge amount of fert trials in US PNW and BC: foliar and volume response

- Key trials/reports in BC are:
- Shawnigan Lake (CFS); physiology of response,
- EP703 (MoFR); used to calibrate TIPSY,
- FRDA Research Memo #224; Criteria for Site and Stand Selection of Coastal Fd (1995, E. McWilliams and R Carter)



Key Results/Limitations of these Works are :

- Site index is the best site predictor of fert response but it is imperfect.
- Lower SI's have higher relative responses but medium (and some good) sites have the best absolute responses.
 Absolute response and site productivity drive financial viability!
- Research plots predominantly in CDF and CWHdm/xm/mm1. Other CWH variants are not, or poorly, represented.
- There has been no linkage of response to BEC site series.

Tipsy Fert Response by Age and SI:

Values are MoFR Recommended Fd Responses multiplied by standard OAFs (OAF1=85% and OAF2=90%) and an 80% fertilization-specific operational efficiency factor

Key Issues for Fertilization Planning:

- Fertilization costs have more than doubled since 1995:
 - Narrows criteria for stand viability
 - treatment age
 - required interval between treatment and harvest and re-treatment
 - Fd component of stand
 - Importance of wood quality
- Optimal fertilization ages are often not available due to conflicts with harvest planning.
- Access issues.
- Uncertain fert responses in some key BEC units.

Opportunities for Manual Treatments:

- Can be economically viable or preferred to aerial treatments:
 - late rotation,
 - good access/operability,
 - available labour,
 - constrained areas
- Application costs are higher but fert costs are lower per m3 of treatment response

BAB Stand Selection Criteria for Manual Fert:

	Ranking Mature Forest (40-100yrs)		
	High	Medium	Low
Stand Characteristics			
Fd Composition (well distributed sph with >25% LC, room to expand)	101 to 150	51 to 100	25 to 50
Quality (branching, form, ROG)	Good to Medium		
Forest Health (Includes: root rots, blowdown, off-site symptoms, other)		<5%	
Site Characteristics			
BEC Variant	CWHxm,dm,vm1, mm1		CWHvm2, mm2
Elevation/Aspect	Any		<800m/SE to W
Dominant Site Series	ss01		
Site Index	xm, dm: 28-32m,	SI outside the	mm2: 30-36m,
	mm1: 32-36m,	preferred ranges	vm2: 32-38m
	vm1: 34-38m		
Access/Slope	<100m from rd/	<150m from rd/	<200m from rd/
	<30%	<40%	<50%

Opportunities for Cw on non-SCHIRP Sites:

- Product values are high for second growth
- Cw is relatively scarce and BC can be a dominant producer
- Some fert research has been done which shows foliar and height responses. However there are no significant volume response results yet
- Not enough Cw being grown on medium (to rich) sites
- Lack of research and knowledge about growing and managing Cw

Fertilization and Carbon: Is there a business case?:

- Pros;
 - As part of an overall strategy to grow more wood for non-timber and timber uses, fertilization can have a positive impact
- Cons;
 - I do not see a future where carbon accounting along will support fertilization of sites/stands that are not otherwise viable for treatment

Recommendations:

Gold Medal:

- Good basic silviculture, which not only meets regulatory requirements, but develops stands of valuable species, grown at the appropriate densities are the foundation of a viable fertilization program.
- More research on sites/species not covered by existing research network (this is not the same as the fert monitoring being done now!).

Recommendations Cont'd:

Silver Medal:

- Invest in good planning which incorporates education and get ahead of harvest scheduling.
- Need to localize stand selection criteria and keep them up to date as costs and knowledge change.

Recommendations Con't:

Bronze Medal:

- Develop protocols to monitor and report back on "early harvest" of fertilized stands.
- Where suitable, consider manual fertilization as part of an overall forest management strategy